On Convergent Interpolatory Polynomials

P. Erdôs, A. Kroò,* and J. Szabados*
Mathematical Institute, Hungarian Academy of Sciences, Reáltanoda u. 13-15, Budapest H-1053, Hungary

Communicated by Oved Shisha
Received December 2, 1987

Let

$$
\begin{equation*}
X_{n}:-1 \leqq x_{n n}<x_{n-1, n}<\cdots<x_{1 n} \leqq 1 \quad(n=1,2, \ldots) \tag{1}
\end{equation*}
$$

be a system of nodes of interpolation. We are interested in finding necessary and sufficient conditions on (1) in order that for every $f(x) \in C[-1,1]$ and $\varepsilon>0$ there exist polynomials $p_{n}(x) \in \Pi_{[n(1+\varepsilon)]}$ such that

$$
\begin{equation*}
p_{n}\left(x_{k n}\right)=f\left(x_{k n}\right) \quad(k=1, \ldots, n ; n=1,2, \ldots) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|f(x)-p_{n}(x)\right\|=0 \tag{3}
\end{equation*}
$$

Here Π_{m} is the set of algebraic polynomials of degree at most $m, C[-1,1]$ is the space of continuous functions on the interval $[-1,1]$, and $\|\cdot\|$ is the maximum (over $[-1,1]$) norm.

Let $x_{k n}=\cos t_{k n}, 0 \leqq t_{1 n}<t_{2 n}<\cdots<t_{n n} \leqq \pi$, and for an arbitrary interval $I \subseteq[0, \pi]$, denote

$$
N_{n}(I)=\sum_{t_{k n} \in I} 1
$$

In this paper we shall prove the following
Theorem. For every $f(x) \in C[-1,1]$ and $\varepsilon>0$ there exists a sequence of polynomials $p_{n}(x) \in \Pi_{[n(1+\varepsilon)]}$ such that (2) and

$$
\begin{equation*}
\left\|f(x)-p_{n}(x)\right\|=O\left(E_{[n(1+\varepsilon)]}(f)\right) \tag{4}
\end{equation*}
$$

[^0]hold, if and only if
\[

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \frac{N_{n}\left(I_{n}\right)}{n\left|I_{n}\right|} \leqq \frac{1}{\pi} \quad \text { whenever } \quad \lim _{n \rightarrow \infty} n\left|I_{n}\right|=\infty \quad\left(\left|I_{n}\right|=\text { length of } I_{n}\right) \tag{5}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\underline{l i m}_{n \rightarrow \infty} \min _{1 \leqq i \leqq n-1} n\left(t_{i+1, n}-t_{i . n}\right)>0 . \tag{6}
\end{equation*}
$$

Here the O sign refers to $n \rightarrow \infty$ and indicates a constant depending only on ε; $E_{m}(f)$ is the best uniform approximation of $f(x)$ by polynomials of degree at most n.

This theorem, in a slightly weaker form ((4) replaced by (3)) was stated in [1, Theorem 4]. There was no proof given, only an indication that it is a simple modification of the proof of Theorem 3. While we were unable to reconstruct this "simple modification" (it was probably not that simple at all), we found a proof which we think worthwhile to publish, since the above theorem is a fundamental and frequently quoted result of the theory of interpolation.

The proof is long and sophisticated, and in order to make it more understandable we break it into a series of lemmas. First we aim at the stifficiency of conditions (5)-(6).

Lemma 1. Under conditions (5), (6) for any $\varepsilon>0$ there exists a system of nodes (in not necessarily decreasing order)

$$
\begin{align*}
Y_{n}: y_{k} & =y_{k n}=\cos \eta_{k} \\
\eta_{k} & =\eta_{k m}=\frac{2 k-1+d_{k}}{m} \frac{\pi}{2} \\
k & =1, \ldots, m=[n(1+\varepsilon)] ; n \geqq n_{0} \tag{7}
\end{align*}
$$

such that
(a) the x_{i} 's are among the y_{k} 's;
(b) $n\left(\eta_{k+1}-\eta_{k}\right) \geqq c>0\left(k=1, \ldots, m ; n \geqq n_{0}\right)$ with an absolute constant c, and
(c) $\left|\sum_{k=1}^{s} d_{k}\right| \leqq A(s=1, \ldots, m)$ with a constant $A=A(\varepsilon)$.

Proof. Condition (5) implies that for any $\varepsilon>0$, there exist $\Delta(\varepsilon)$ and $n_{0}(\varepsilon)$ such that

$$
\begin{equation*}
\frac{N_{n}(I)}{n|I|} \leqq \frac{1}{\pi}+\varepsilon \quad \text { whenever } \quad n(I) \geqq \Delta(\varepsilon) \quad \text { and } \quad n \geqq n_{0}(\varepsilon) . \tag{8}
\end{equation*}
$$

Let

$$
\Delta=\max \left(\Delta\left(\frac{\varepsilon}{4}\right), \frac{30}{\varepsilon}\right)
$$

and consider the intervals

$$
J_{i}=\left[\frac{i \Delta}{n}, \frac{(i+1) \Delta}{n}\right) \quad\left(i=0, \ldots,\left[\frac{\pi n}{\Delta}\right]-1\right)
$$

By (8) and $n\left|J_{i}\right|=\Delta$,

$$
N_{n}\left(J_{i}\right) \leqq\left(\frac{1}{\pi}+\frac{\varepsilon}{4}\right) \Delta \quad\left(i=0, \ldots,\left[\frac{\pi n}{\Delta}\right]-1\right) .
$$

The number of equidistant nodes

$$
\theta_{k}=\frac{2 k-1}{m+1} \frac{\pi}{2} \quad(k=1, \ldots, m+1)
$$

in J_{i} is $\geqslant(\Delta(m+1)) / \pi n>(\Delta / \pi)(1+\varepsilon)$, i.e., at least $\Delta \varepsilon(1 / \pi-1 / 4)>3$ more than $N_{n}\left(J_{i}\right)$.

We shall construct the η_{k} 's in two phases. In the first phase, in each J_{i} where at least one t_{k} occurs, replace the θ_{j} 's by these t_{k} 's, and leave the remaining θ_{j} 's unchanged. According to the previous argument, there is at least one such unchanged θ_{j} in each J_{i} (call them free nodes). This system fulfils so far only (a). We would like to ensure (b). By (6) we may assume that

$$
\begin{equation*}
t_{i+1}-t_{i} \geqslant \frac{c}{n} \quad(c<1, i=1, \ldots, n-1) \tag{9}
\end{equation*}
$$

Consider those remaining θ_{j} 's for which there exists a t_{i} such that

$$
\begin{equation*}
0<\left|\theta_{j}-t_{i}\right| \leqslant \frac{c}{7 n} \tag{10}
\end{equation*}
$$

and move these θ_{j} 's alternatively to the left or to the right with a distance $2 c /(7 n)$. Then these translated θ_{k}^{\prime} 's will be farther than $c /(7 n)$ from any t_{i}
(see (9)), and the distance of adjacent new θ_{j}^{\prime} s will be at least $\pi /(m+1)-4 c /(7 n)>(\pi / 2-4 / 7)(1 / n)$. Thus the change in the contribution of the d_{k} 's will be $O(1)$, and (b) is satisfied. After completing these steps, at least one free node remains in each J_{i}.

In the second phase we want to ensure (c) by further modifications. Divide consecutive J_{i} 's into groups of 10Δ members. In each J_{i}, the max:mal contribution of d_{k} 's is $<(1 / \pi+\varepsilon / 4) A \cdot 2(1+\varepsilon) \Delta / \pi<A^{2}$ (we may assume that $\varepsilon<1$); thus for the whole group it is $<10 \Lambda^{3}$. We would like to arrive at a situation where the total contribution of d_{k} 's at the end o ? each group is $<104^{3}$. We proceed by induction on the number of groups. As we have seen, in the first group the contribution is $<104^{3}$. Assume that the total contribution of the first $a-1$ groups is $<10 A^{3}$, and, without loss of generality we may assume that this contribution is nonnegative. By proper changes, we would like to have a contribution in the ath group between $-10 A^{3}$ and 0 , thus ensuring a total contribution in the first a groups between $-10 \Delta^{3}$ and $10 \Delta^{3}$. In the a th group, the total contribution is between $-10 \Delta^{3}$ and $10 \Delta^{3}$. If it is negative, we are done. Thus assume that it is between 0 and $10 \Delta^{3}$, and omit a free node from the $(5 \Delta+2$ nd J_{i} and replace it by the midpoint of any two adjacent nodes in the $(5 A-2)$ nd J_{i}. The result is a decrease of at least $2 \cdot 2(1+\varepsilon) A / \pi$ and at most $4 \cdot 2(1+\varepsilon) \Delta / \pi$ in the contribution of the d_{k} 's in the a th group. If this change transforms this contribution below zero, then we are done. If not, then omit a free node from the $(5 \Delta+3)$ rd J_{i} and replace it by the midpoint of any two adjacent nodes in the $(54-3)$ rd J_{t}. The result is another decrease of at least $4 \cdot 2(1+\varepsilon) \Delta / \pi$ and at most $6 \cdot 2(1+\varepsilon) \Delta / \pi$ in the contribution of the d_{k} 's in the a th group. If this second change transforms this contribution below zero, then we are done; otherwise continue this procedure with the $(5 A+4)$ th and $(5 A-4)$ th J_{i} 's, etc. Before exhausting all the possibilities we must arrive at the desired situation, because the decrease of the contribution in the a th group after all the possible changes would be at least

$$
(2+4+\cdots+10 \Delta-2)(1+\varepsilon) \Delta / \pi>\frac{2 \Delta}{\pi} 5 \Delta(5 A-1)>\frac{40 \Delta^{3}}{\pi}
$$

which is greater than 104^{3}, the original maximal contribution in the ath group. (Even if we needed the last change here, its maximal contribution is $<10 \Delta \cdot 2(1+\varepsilon) \Delta / \pi<13 \Delta^{2}<10 \Delta^{3}$, so we never get under $-10 \Delta^{3}$.)

After making all these changes in each group, we arrive at a situation where the total contribution of the d_{k} 's at the last J_{i} in a group will be $<10 A^{3}$. But it is clear from the previous argument that $\left|d_{k}\right|<13 d^{2}$, and since the number of d_{k} 's in a group is $<10 \Delta \cdot(\Delta(1+\varepsilon) / \pi)+5 \Delta<12 \Delta^{2}$, the
contribution inside a group cannot be higher than $134^{2} \cdot 124^{2}$, i.e., bounded again. Thus Lemma 1 is completely proved.

Lemma 2, For the fundamental functions of Lagrange interpolation based on the nodes (7) we have

$$
\left\|l_{j}\left(Y_{m}, x\right)\right\|=O(1) \quad(k=1, \ldots, m)
$$

Proof. Let

$$
\begin{align*}
Z_{m}: z_{k} & =\cos \frac{2 k-1}{2 m} \pi \quad(k=1, \ldots, m) \\
T_{m}(x) & =\prod_{k=1}^{m}\left(x-z_{k}\right) \tag{11}\\
\Omega_{m}(x) & =\prod_{k=1}^{m}\left(x-y_{k}\right)
\end{align*}
$$

Then for a fixed k, the number v_{k} of y_{i} 's for which $\operatorname{sgn}\left(y_{k}-y_{i}\right)=\operatorname{sgn}(k-i)$ is evidently $v_{k}=o(1)$, and thus denoting $A_{k}=\left\{i \mid \operatorname{sgn}\left(y_{k}-y_{i}\right)=\operatorname{sgn}(k-i)\right\}$, $B_{k}=\{1, \ldots, m\} \backslash A_{k}$ we have

$$
\begin{aligned}
\left|\frac{T_{m}^{\prime}\left(z_{k}\right)}{\Omega^{\prime}\left(y_{k}\right)}\right| & =\prod_{i \in A_{k}} \frac{z_{k}-z_{i}}{y_{i}-y_{k}} \prod_{i \in B_{k}} \frac{z_{k}-z_{i}}{y_{k}-y_{i}} \\
& =O(1) \prod_{i \in B_{k}}\left(1+\frac{z_{k}-y_{k}+y_{i}-z_{i}}{y_{k}-y_{i}}\right) \\
& =O(1) \exp \sum_{i \in B_{k}} \frac{z_{k}-y_{k}+y_{i}-z_{i}}{y_{k}-y_{i}} \\
& =O(1) \exp \sum_{i \neq k} \frac{z_{k}-y_{k}+y_{i}-z_{i}}{y_{k}-y_{i}}
\end{aligned}
$$

Here, using $\left|d_{k}\right|=O(1)$ (see Lemma 1(c)), we get for $1 \leqq k \leqq m / 2$

$$
\begin{aligned}
\mid z_{k}- & y_{k} \left\lvert\, \sum_{i \neq k} \frac{1}{y_{k}-y_{i}}\right. \\
& =O\left(\frac{k\left|d_{k}\right|}{m^{2}}\right)\left\{\left|\sum_{i \neq k} \frac{1}{z_{i}-z_{k}}\right|+\sum_{i \neq k}\left|\frac{y_{k}-z_{k}+z_{i}-y_{i}}{\left(z_{k}-z_{i}\right)\left(y_{k}-y_{i}\right)}\right|\right\} \\
& =O\left(\frac{k}{m^{2}}\right)\left\{\left|\frac{T_{m}^{\prime \prime}\left(z_{k}\right)}{T_{m}^{\prime}\left(z_{k}\right)}\right|+\sum_{i \neq k} \frac{\left(k\left|d_{k}\right| / m^{2}\right)+\left(i\left|d_{i}\right| / m^{2}\right)}{\left((k-i)^{2} \min (k+i, m / 2)^{2}\right) / m^{4}}\right\} \\
& =O\left(\frac{k}{m^{2}}\right)\left\{\frac{m^{2}}{k^{2}}+\frac{m^{2}}{k} \sum_{i \neq k} \frac{1}{(k-i)^{2}}\right\}=O(1),
\end{aligned}
$$

and using Abel's transform

$$
\begin{aligned}
\left|\sum_{i \neq k} \frac{z_{i}-y_{i}}{y_{k}-y_{i}}\right|= & \left|\sum_{i \neq k} \frac{2 \sin \left(d_{i} \pi / 4 m\right) \sin \left(\left(4 i-2+d_{i}\right) / 4 m\right) \pi}{y_{k}-y_{i}}\right| \\
= & \left|\sum_{i \neq k} \frac{\left(d_{i} \pi / 2 m\right) \sin \left(\left(4 i-2+d_{i}\right) / 4 m\right) \pi+O\left(m^{-3}\right)}{y_{k}-y_{i}}\right| \\
= & O\left\{\frac { 1 } { m } \sum _ { i \neq k , k + 1 } \left(\frac{\sin \left(\left(4 i+2+d_{i}\right) / 4 m\right) \pi}{y_{k}-y_{i+1}}\right.\right. \\
& \left.\left.-\frac{\sin \left(\left(4 i-2+d_{i}\right) / 4 m\right) \pi}{y_{k}-y_{i}}\right) \sum_{j=1}^{i} d_{i}\right\}+O(1) \\
= & O\left(\frac{1}{m}\right) \cdot \sum_{i \neq k \cdot k+1}\left(\frac{(i / m)\left|y_{i}-y_{i+1}\right|}{\left|y_{k}-y_{i+i}\right| \cdot\left|y_{k}-y_{i}\right|}+\frac{i / m^{2}}{\left|y_{k}-y_{i}\right|}\right)+O(1) \\
= & O\left(\frac{1}{m}\right) \sum_{i \neq k}\left(\frac{i^{2} / m^{3}}{\left(k^{2}-i^{2}\right)^{2} / m^{4}}+\frac{i / m^{2}}{\left|k^{2}-i^{2}\right| / m^{2}}\right)+O(1) \\
= & O\left(\sum_{i \neq k} \frac{1}{(k-i)^{2}}+\frac{1}{m} \sum_{i \neq k} \frac{1}{|k-i|}+1\right)=O(1)
\end{aligned}
$$

and similarly for $m / 2 \leqq k \leqq m$. Hence

$$
\begin{equation*}
\left|T_{m}^{\prime}\left(z_{k}\right)\right|=O\left(\left|\Omega_{m}^{\prime}\left(y_{k}\right)\right|\right) \quad(k=1, \ldots, m) \tag{12}
\end{equation*}
$$

Now let $|x| \leqq 1$ be arbitrary and $0 \leqq j \leqq m$ be such that $z_{j+1} \leqq x \leqq z_{;}$ (we take $z_{0}=1$ and $z_{m+1}=-1$). Then similarly as before, denoting $u \in\left(z_{j+1}, z_{j}\right)$ for which $T_{m}(u)$ is a local maximum, the number $v(x)$ of $i^{\prime \prime} \mathrm{s}$ for which $\operatorname{sgn}\left(\left(x-y_{i}\right) /\left(u-z_{i}\right)\right)=-1$ is evidently $v(x)=O(1)$. Hence

$$
\begin{aligned}
\left|\prod_{i=k} \frac{x-y_{i}}{u-z_{i}}\right|= & \prod_{\operatorname{sgn}\left(\left(x-y_{i}, f\left(u-z_{i}\right)\right)=-1\right.}\left|\frac{x-y_{i}}{u-z_{i}}\right| \\
& \times \sum_{\operatorname{sgn}\left(\left(x-y_{i}\right)\left(u-z_{i}\right)\right) \geqq 0}\left(1+\frac{x-u+z_{i}-y_{i}}{u-z_{i}}\right) \\
= & O(1) \exp \sum_{\operatorname{sgn}\left(\left(x-y_{i}, /(u-z \cdot)\right) \geqq 0\right.} \frac{x-u+z_{i}-y_{i}}{u-z_{i}} \\
= & O(1) \exp \left\{|x-u|\left(\left|\frac{T_{m}^{\prime}(u)}{T_{m}(u)}\right|+\sum_{\operatorname{sgn}\left(1 x-v_{i}\right),(u-z)=-1} \frac{1}{\left|u-z_{i}\right|}\right)\right. \\
& \left.+\sum_{i \neq j} \frac{i / m^{2}}{\left|j^{2}-i^{2}\right| / m^{2}}\right\} \\
= & O(1) \exp O\left\{\frac{j}{m^{2}}\left(\frac{m^{2}}{j}+v(x) \cdot \frac{m^{2}}{j}\right)+\frac{1}{j}\right\}=O(1) .
\end{aligned}
$$

Thus using (12) we get

$$
\left|\frac{l_{k}\left(Y_{m}, x\right)}{l_{k}\left(Z_{m}, u\right)}\right|=\left|\frac{T_{m}^{\prime}\left(z_{k}\right)}{\Omega_{m}^{\prime}\left(y_{k}\right)} \prod_{i \neq k} \frac{x-y_{i}}{u-z_{i}}\right|=O(1) \quad(k=1, \ldots, m) ;
$$

i.e., using Fejér's result $\left\|l_{k}\left(z_{m}, u\right)\right\| \leqq \sqrt{2}(k=1, \ldots, m)$ we get the statement of the lemma.

After these preliminaries, the sufficiency of conditions (5), (6) is easily proved. Let $s=[n \varepsilon / 3]$, and apply Lemma 1 with $\varepsilon / 3$ instead of ε; then $m=[n(1+\varepsilon / 3)]$. Let $g(x) \in \Pi_{[n(1+\varepsilon)]}$ be the best approximating polynomial of $f(x)$. Consider

$$
\begin{aligned}
p_{n}(x)= & q(x)+\sum_{j=0}^{s}\left\{\sum_{z_{j+1}, s<y_{k} \leqq z_{j, s}} \frac{\left(f\left(x_{k}\right)-q\left(x_{k}\right)\right) l_{k}\left(Y_{m}, x\right)}{\left\{l_{j}\left(Z_{s}, y_{k}\right)+l_{j+1}\left(Z_{s}, y_{k}\right)\right\}^{2}}\right. \\
& \times\left\{l_{j}\left(Z_{s}, x\right)+l_{j+1}\left(Z_{s}, x\right)\right\}^{2} .
\end{aligned}
$$

Since by the well-known Erdös-Turán result [2, Lemma IV]

$$
\begin{equation*}
l_{j}\left(Z_{s}, y_{k}\right)+l_{j+1}\left(Z_{s}, y_{k}\right) \geqq 1 \quad\left(z_{j+1}<y_{k} \leqq z_{j}\right) \tag{13}
\end{equation*}
$$

the definition of $p_{n}(x)$ makes sense. Now

$$
\operatorname{deg} p_{n} \leqq m-1+2(s-1)<n\left(1+\frac{\varepsilon}{3}\right)+\frac{2 n \varepsilon}{3}=n(1+\varepsilon)
$$

and evidently

$$
p_{n}\left(y_{i}\right)=f\left(y_{i}\right) \quad(i=1, \ldots, m) .
$$

This proves (2), since by Lemma 1 (a) the x_{k} 's are among the y_{i}^{\prime} s. By the definition of $q(x)$, (13), Lemma 2, and the inequality $(a+b)^{2} \leqq 2\left(a^{2}+b^{2}\right)$ we get

$$
\begin{aligned}
\left\|f(x)-p_{n}(x)\right\| & \leqq\|f(x)-q(x)\|\left\{1+O\left[\left\|\sum_{j=0}^{s} l_{j}\left(Z_{s}, x\right)^{2} \sum_{j,+1<y \leqq} 1\right\|\right]\right\} \\
& =O\left(E_{[n(1+\varepsilon)]}(f)\right)\left\|\sum_{j=0}^{s} l_{j}\left(Z_{s}, x\right)^{2}\right\|,
\end{aligned}
$$

since by Lemma 1 (b), $\sum_{z_{j+1}<y_{k} \leqq z_{j}} 1=O(1)$. But here again by Fejér's result

$$
\left\|\sum_{j=0}^{s} l_{i}\left(Z_{s}, x\right)^{2}\right\| \leqq 2
$$

and thus (4) is also proved.

To prove the necessity of (6), assume that there exists a sequence $i_{1}<i_{2}<\cdots$ such that

$$
\lim _{n \rightarrow \infty} n\left(t_{i_{n}+1 . n}-t_{i_{n, n}}\right)=0 .
$$

Hence passing to monotone subsequences (if necessary), there exists a $t \in[0, \pi]$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} t_{i_{n}, n}=t, \quad t_{i_{n}+1 . n}-t_{i_{n}, n} \leqq \frac{\varepsilon_{h}}{n}, \quad \lim _{n \rightarrow \infty} \varepsilon_{n}=0 . \tag{14}
\end{equation*}
$$

and the sequences $\left\{t_{i_{n}, n}\right\}$ and $\left\{t_{t_{n}+1 . n}\right\}$ have no points in common. Also, we may assume that at least one of these sequences, say $\left\{t_{i_{n}, n}\right\}$, is strictiy monotone. Then define

$$
f\left(t_{i_{n}, n}\right)=0, \quad f\left(t_{i_{n}+1 . n}\right)=\sqrt{\varepsilon_{n}},
$$

and f is continuous and linear between these nodes. Because of (14), this defines an $f(x) \in C[-1,1]$. By (2) and the Bernstein inequality

$$
\begin{aligned}
\frac{n}{\sqrt{\varepsilon_{n}}} & \leqq \frac{f\left(\cos t_{i_{n}+1, n}\right)-f\left(\cos t_{i_{n}, n}\right)}{t_{i_{n}+1, n}-t_{i_{n}, n}} \\
& =\frac{p_{n}\left(\cos t_{i_{n}+1, n}\right)-p_{n}\left(\cos t_{i_{n}, n}\right)}{t_{i_{n}+1, n}-t_{i_{n}, n}} \\
& =\left.\frac{d}{d t} p_{n}(\cos t)\right|_{t=\xi}=O(n)\left\|p_{n}\right\| \quad\left(\xi \in\left(t_{i_{n}, n}, t_{i_{n}+1, n}\right)\right),
\end{aligned}
$$

i.e., $\left\|p_{n}\right\| \geqq 1 / \sqrt{\varepsilon_{n}} \rightarrow \infty$ as $n \rightarrow \infty$, which shows that (4) cannot hold. Hence (6) is necessary.

The proof of the necessity of (5) is more difficuit. First we prove the following.

Lemma 3. Let $I_{n} \subset[-\pi, \pi] \quad(n \in \mathbb{N})$ and let t_{n} be a sequence of irigonometric polynomials of order at most r_{n} such that $r_{n}\left|I_{n}\right| \rightarrow \infty$ and $\left\|t_{n}\right\| \leqslant M(n \in \mathbb{N})\left(r_{n} \uparrow \infty\right)$. Denote by $Q\left(I_{n}\right)$ the number of $+1,-1,+1, \ldots$ oscillations of t_{n} on I_{n}. Then

$$
\varlimsup_{n \rightarrow \infty} \frac{Q\left(I_{n}\right)}{r_{n}\left|i_{n}\right|} \leqslant \frac{1}{\pi} .
$$

Proof. Assume to the contrary that $Q\left(I_{n}\right) / r_{n}\left|I_{n}\right|>(1+\delta) / \pi$ for some $\delta>0$ and $n \in \Omega(\Omega \subset \mathbb{N}$ infinite $)$, where we may take $I_{n}\left(-a_{n}, a_{n}\right)$ and $0<a_{n}<\pi-2 \delta_{1}$. Let now s_{n} be an even integer such that
$\sqrt{r_{n} a_{n}}<s_{n}<2 \sqrt{r_{n} a_{n}}$ and let $\varepsilon_{n}=\pi M a_{n} /\left(s_{n} \sin \delta_{1}\right)$. Consider the trigonometric polynomial

$$
u_{n}(x)=t_{n}(x)+\frac{1}{2}\left(\frac{\sin (x / 2)}{\sin \left(a_{n} / 2\right)}\right)^{s_{n}} \cos \left(r_{n}-\frac{s_{n}}{2}\right) x .
$$

of order at most r_{n}. Evidently, on $\left[-a_{n}, a_{n}\right], u_{n}$ has at least $Q\left(I_{n}\right)-1$ zeros. If $x \notin\left(-a_{n}-\varepsilon_{n}, a_{n}+\varepsilon_{n}\right)$ we have for s_{n} large enough

$$
\begin{aligned}
\left(\frac{\sin (x / 2)}{\sin \left(a_{n} / 2\right)}\right)^{s_{n}} & \geqslant\left(\frac{\sin \left(\left(a_{n}+\varepsilon_{n}\right) / 2\right)}{\sin \left(a_{n} / 2\right)}\right)^{s_{n}} \\
& =\left(1+\frac{2 \sin \left(\varepsilon_{n} / 4\right) \cos \left(a_{n} / 2+\varepsilon_{n} / 4\right)}{\sin \left(a_{n} / 2\right)}\right)^{s_{n}} \\
& \geqslant\left(1+\frac{2 \varepsilon_{n} \sin \delta_{1}}{\pi a_{n}}\right)^{s_{n}} \\
& =\left(1+\frac{2 M}{s_{n}}\right)^{s_{n}} \geqslant 2^{2 M}>2 M .
\end{aligned}
$$

Thus u_{n} has at least $\left(2 \pi-2 a_{n}-2 \varepsilon_{n}\right)\left(\left(2 r_{n}-s_{n}\right) / 2 \pi\right)-4$ zeros in $[-\pi, \pi] \backslash\left(-a_{n}-\varepsilon_{n}, a_{n}+\varepsilon_{n}\right)$. Therefore

$$
Q\left(I_{n}\right)+\left(2 \pi-2 a_{n}-2 \varepsilon_{n}\right) \frac{2 r_{n}-s_{n}}{2 \pi} \leqslant 2 r_{n}+5
$$

i.e.,

$$
\begin{aligned}
& Q\left(I_{n}\right) \leqslant 5+\frac{2 a_{n} r_{n}}{\pi}+\frac{2 \varepsilon_{n} r_{n}}{\pi}+s_{n}, \\
& \frac{1+\delta}{\pi}<\frac{Q\left(I_{n}\right)}{r_{n}\left|I_{n}\right|}=\frac{Q\left(I_{n}\right)}{2 r_{n} a_{n}} \leqslant \frac{1}{\pi}+c\left(\frac{1}{r_{n} a_{n}}+\frac{\varepsilon_{n}}{a_{n}}+\frac{1}{\sqrt{r_{n} a_{n}}}\right),
\end{aligned}
$$

a contradiction, since $r_{n} a_{n} \rightarrow \infty$ and $\varepsilon_{n} / a_{n}=c / s_{n} \rightarrow 0$.
We now return to the proof of the necessity of (5). Define the continuous 2π-periodic function F_{n} by $F_{n}\left(t_{k n}\right)=(-1)^{k}(1 \leqslant k \leqslant n), F_{n}$ is linear in between, constant in $\left[0, t_{1 n}\right],\left[t_{n n}, \pi\right], F_{n}(t)=F_{n}(-t)(-\pi \leqslant t \leqslant 0)$, and $F_{n}(t+2 \pi)=F_{n}(t) \quad(-\infty<t<\infty)$. By (15) $\omega\left(F_{n}, h\right) \leqslant c n h$, hence $E_{n}^{T}\left(F_{n}\right) \leqslant c_{1}$. Set $f_{n}(x)=F_{n}(\arccos x)$. Then by assumption for any $\varepsilon>0$ there exist $p_{n} \in \Pi_{[(1+\varepsilon) n]}$ such that $p_{n}\left(x_{k n}\right)=f_{n}\left(x_{k n}\right)=(-1)^{k} \quad(1 \leqslant k \leqslant n)$ and

$$
\left\|f_{n}-p_{n}\right\| \leqslant c_{\varepsilon} E_{[(1+\varepsilon) n]}\left(f_{n}\right)=c_{\varepsilon} E_{[(1+\varepsilon) n]}^{T}\left(F_{n}\right) \leqslant \tilde{c}_{e} .
$$

Thus $\left\|p_{n}\right\| \leqslant c_{\varepsilon}^{*}\left(\operatorname{deg} p_{n}=[(1+\varepsilon) n]\right)$; hence by Lemma 3

$$
\overline{\lim }_{n \rightarrow \infty} \frac{N_{n}\left(I_{n}\right)}{[(1+\varepsilon) n]\left|I_{n}\right|} \leqslant \overline{\lim }_{n \rightarrow \infty} \frac{Q\left(I_{n}\right)}{\left[(1+\varepsilon i n]\left|I_{n}\right|\right.} \leqslant \frac{1}{\pi}
$$

Since $\varepsilon>0$ is arbitrary, we can put $\varepsilon=0$ here.
Using the same arguments, we could have proved the following, slightiy more general theorem:

Theorem A. For every $f(x) \in C[-1,1], \varepsilon>0$, and $d \geqslant 1$ there exists a sequence of polynomials $q_{n}(x) \in \Pi_{[d n(1+\varepsilon)]}$ such that (2) and

$$
\left\|f(x)-q_{n}(x)\right\|=O\left(E_{[d n: 1+\varepsilon)]}(f)\right)
$$

hold, if and only if

$$
\overline{\lim }_{n \rightarrow \infty} \frac{N_{n}\left(I_{n}\right)}{n\left|I_{n}\right|} \leqq \frac{d}{\pi} \quad \text { whenever } \quad \lim _{n \rightarrow \infty} n\left|I_{n}\right|=\infty
$$

and (6) holds.

References

1. P. Erdös, On some convergence properties of the interpolation polynomials, Ann, of Maih.
(2) 44 (1943), 330-337.
2. P. Erdös and P. Turán. On interpolation III, Ann. of Math. (2) 41 (1940), 510-553.
3. M. Riesz, Eine trigonometrische Interpolationsformel und einige Ungleichungen fur Polynome. Jahresher. Deutsch. Math.-Verein. 23 (1914), 354-368.

[^0]: * The research of these authors was supported by the Hungarian National Foundation for Scientific Research, Grant 1801.

