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Let

(n=1,2, ... ) (1 )

be a system of nodes of interpolation. We are interested III finding
necessary and sufficient conditions on (1) in order that for every
f(x) E C[ -1,1] and t: > 0 there exist polynomials p,,(x) E Il[,,{1 H\J such
that

and

(k= 1, ..., n; n= 1, 2, ... ) (2 )

lim Ilf(x)- p,,(x)1\ =0. (3)

Here Ilm is the set of algebraic polynomials of degree at most m, C[ - 1, 1]
is the space of continuous functions on the interval [ -1, 1], and 11·11 is the
maximum (over [ -1, 1]) norm.

Let Xk"=COStk,,, 0;£t 1,,<t2,,< ... <t",,;£n:, and for an arbitrary inter
val I fi. [0, n:], denote

NII(I) = L 1.
[kll E I

In this paper we shall prove the following

THEOREM. For every f(x) E C[ -1, 1] and t: > 0 there exists a sequence of
polynomials PII(x)EIl[II(1H)] such that (2) and

Ilf(x) - PI1(x)11 = 0(£[11(1 +s\J(f)) (4)
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hold, (( and only if

alld
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whenever lim nl/,"l = ex
n _ oc
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(11nl = length ofln)

(5)

(6 )

Here the 0 sign refers to n ---> eN and indicates a constant depending only
on /;; EmU) is the best uniform approximation of f(x) by polynomials of
degree at most n.

This theorem, in a slightly weaker form ((4) replaced by (3» was stated
in [1, Theorem 4]. There was no proof given, only an indication that it is
a simple modification of the proof of Theorem 3. While we were unable to
reconstruct this "simple modification" (it was probably not that simple at
all), we found a proof which we think worthwhile to publish, since the
above theorem is a fundamental and frequently quoted result of the theory
of interpolation.

The proof is long and sophisticated, and in order to make it more under
standable we break it into a series of lemmas. First we aim at the stif
ficiency of conditions (5 H 6).

LEMMA 1. Under conditions (5), (6) for any /; > 0 there exiSlS a system
of nodes (in not necessarily decreasing order)

2k-1 + dk 1[

11k = 11km = nl 2'

such thal

k= 1, ..., m= [n(l +t:)]; n"i;;no (7j

ta) the x/s are among the y/s;

(b) n(11k+l-11d"i;;c>O (k= 1, ..., 111; n"i;;no) with an absolute con
stant c, and

(c) ILt~ 1 dkl :;; A (s = 1, ..., 111) with a constant A = A(/;).
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Proof Condition (5) implies that for any 8> 0, there exist A(8) and
110(8) such that

whenever n(I)~ A(8) and

Let

and consider the intervals

_[iA -,-U_+-,-i)_A)J j - ,-

n n

By (8) and nlJjl = A,

Nfl (JJ ~ (~+DA

The number of equidistant nodes

(k=1, ...,m+1)

in J j is ~ (A(m + 1))/nn > (A/n)( 1+ 8), i.e., at least A8( l/n - 1/4) > 3 more
than N)JJ

We shall construct the 11k'S in two phases. In the first phase, in each J j

where at least one t k occurs, replace the 8/s by these tk's, and leave the
remaining 8/s unchanged. According to the previous argument, there is at
least one such unchanged 8j in each J j (call them free nodes). This system
fulfils so far only (a). We would like to ensure (b). By (6) we may assume
that

(c < 1, i = 1, ..., II - 1). (9)

Consider those remaining 8/s for which there exists a t j such that

( 10)

and move these 8/s alternatively to the left or to the right with a distance
2c/(7n). Then these translated 8k 's will be farther than c/(7n) from any t j
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(see (9)), and the distance of adjacent new O/s will be at least
nl(m + 1) - 4cl(7n) > (n12 - 4/7)( lin). Thus the change in the contribution
of the dk's will be O( 1), and (b) is satisfied. After completing these steps,
at least one free node remains in each J i •

In the second phase we want to ensure (c) by further modifications.
Divide consecutive J;'s into groups of 10.1 members. In each Ji , the maxi
mal contribution of dk's is <(1ln+/;/4)A.2(1+/;)A/n<J 2 (we may
assume that /; < I); thus for the whole group it is < lOA 3. We would like
to arrive at a situation where the total contribution of dk's at the end of
each group is < lOA 3

. We proceed by induction on the number of groups.
As we have seen, in the first group the contribution is < 10J 3

• Assume that
the total contribution of the first a-I groups is < IOJ 3, and, without loss
of generality we may assume that this contribution is nonnegative. By
proper changes, we would like to have a contribution in the ath group
between -IOJ 3 and 0, thus ensuring a total contribution in the first a
groups between -IOA 3 and lOJ 3

• In the ath group, the total contribution
is between -10J 3 and IOJ 3

. If it is negative, we are done. Thus assume
that it is between 0 and IOJ 3

, and omit a free node from the (5J +:2 )nd
J i and replace it by the midpoint of any two adjacent nodes in the
(5J - 2)nd h The result is a decrease of at least 2·2(1 + /;) J/n and at
most 4· 2( 1+ /;) L1/n in the contribution of the dk's in the ath group. If this
change transforms this contribution below zero, then we are done. If not,
then omit a free node from the (5J + 3)rd J i and replace it by the midpoint
of any two adjacent nodes in the (5A- 3 )rd J,. The result is another
decrease of at least 4· 2( 1+ /;) J/n and at most 6· 2( 1+ f,) J/n in the con
tribution of the dk's in the ath group. If this second change transforms this
contribution below zero, then we are done; otherwise continue this proce
dure with the (5L1 + 4 )th and (5L1 - 4) th J;'s, etc. Before exhausting all the
possibilities we must arrive at the desired situation, because the decrease of
the contribution in the ath group after all the possible changes would be
at least

2L1 40,13
{2+4+· .. +10Ll-2)(1+f,)LI/n>-5J(5,j-l»--

n 7[

which is greater than 1OL1 3
, the original maximal contribution in the Qth

group. (Even if we needed the last change here, its maximal contribution
is < lOLl ·2(1 + e) J/n < 13,12 < 10L13, so we never get under -10,13.)

After making all these changes in each group, we arrive at a situation
where the total contribution of the dk's at the last J i in a group will be
< lOJ 3

. But it is clear from the previous argument that Idkl < 13A 2
, and

since the number of dk's in a group is < lOLl . (J(l + /;)/n) + 5A < 12J 2
, the
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contribution inside a group cannot be higher than 13L1 2
. 12L1 2

, i.e., bounded
again. Thus Lemma 1 is completely proved. I

LEMMA 2. For the fundamental functions of Lagrange interpolation based
on the nodes (7) we have

Proof Let
2k-1

2 m : Zk = cos -?-n:
_m

m

Tm(x) = n (x-zd,
k~l

m

Qm(x) = n (x - Yd·
k~l

(k = 1, ..., m).

(k= 1, ... , m);

(11 )

Then for a fixed k, the number "k of y:s for which sgn(Yk - Yi) = sgn(k- i)
is evidently l'k = 0(1), and thus denoting Ak = {il sgn(Yk - y;) = sgn(k - i)},
Bk = {1, .", m}\A k we have

(
T;"(Zk)! n Zk-Zi n Zk-Zi
Q'(Yk) = iEAkYi- Yk iEBkYk- Yi

=0(1) n (1 +Zk- Yk+ Yi-Zi)
iEBk Yk - Yi

Here, using Idkl = 0(1) (see Lemma 1(c)), we get for 1~ k ~ ml2

1
JZk - hi L --

i"okYk- Yi
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and using Abel's transform

I
'L ~l-Y:I=I I 2 sin(dJr/4m)si,n((4i.-2+ di )/4m)nj

;*/cY/c-Ji i*/c Y/c-J; I

=1 I (di rc/2m)sin((4i-2+dJ/4m)rc+0(m-
3 )!

;*/c Y/c- Yi I
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(
1 1 1 )

=0 I (k- ')1+- I Ik- '1 + I =0(1),
i*/C l. mi*k I

and similarly for m/2 ~ k ~ m. Hence

1 T:n(zdl = O(IQ~JVk)l) (k= 1, ..., mI. (12)

Now let Ixl ~ 1 be arbitrary and 0 ~ j ~ rn be such that Zj + 1 ~ X ~ Z j

(we take Zo = 1 and 2 m + 1 = -1). Then similarly as before, denoting
U E (Zj + l' z) for which Tm(u) is a local maximum, the number v(x) of ts for
which sgn((x- Yil/(u-z;)= -I is evidently v(x)=O(l). Hence

10X-Y;I_ 0 IX-Yi\I --- --

I:=k U-Z; sgn«x-y,)/(u-,,»~-1 U-Z;

x 0 (l+X-U+Zi-Yi)
sgn((x-j',)//u-=,»);;;O U-Z i

=O(l)exp
sgn«x - y,)/Iu - z.)I;;; 0

{ 'IT'()I . \=O(l)exp jx-uj ~ + I _1_ 1(Tm(U)! sgnl(x-y,)\U_=»=_llu-z;!/

i/m
2

}

+ I Ij'l ~ i 1 1/m2
1=1=;

{
j (m 2

111

2

) l}=O(l)expO m 1 )-+v(x)'j +7 =0(1).
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Thus using (12) we get
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(k= 1, ..., m);j
1k(ym,X)j=1 T;(Zk) Il X-~'il=O(1)
Ik(Zn" U) Qm(Yk) i# U-<'i

i.e., using Fejer's result 111k(zm, u)II~.j2 (k= 1, ..., m) we get the statement
of the lemma. I

After these preliminaries, the sufficiency of conditions (5), (6) is easily
proved. Let s = [m;/3], and apply Lemma 1 with 8/3 instead of 8; then
m = [n( 1+ 8/3)]. Let g(x) E II [n( I + e)] be the best approximating polyno
mial of f(x). Consider

Since by the well-known Erdos-Tunln result [2, Lemma IV]

(13 )

the definition of Pn(x) makes sense. Now

( 8) 2n8
degpn~m-l+2(s-I)<n 1+3 +3=n(1+8),

and evidently

(i= 1, ..., m).

This proves (2), since by Lemma l(a) the x/s are among the )'/s. By the
definition of q(x), (13), Lemma 2, and the inequality (a+b)2~2(a2+b2)

we get

Ilf(x) - Pn(x)11 ~ Ilf(x) - q(x)11 {I + 0 [tt/j(Zs, X)2 0)+1 ~k~=j III]}
= O(E[n(l +e)](f)) tt Ij(Zs' X)211,

since by Lemma l(b), Lz
j
+ I < Yk~=) 1 = 0(1). But here again by Fejer's result

and thus (4) is also proved.
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To prove the necessity of (6), assume that there exists a sequence
i[ < i 2 < ' .. such that

lim n(tin+1.n-tin.n)=O.
II ---+ 00

Hence passing to monotone subsequences (if necessary), there exists a
t E [0, n] such that

lim tin.tl = t,
n - a:

t· -t· <~
In+ L/' 'lI,n = n) lim [;11 = 0,

11 ......... X

(14)

and the sequences {tin,"} and {t ,n + 1.I1} have no points in common. Also, we
may assume that at least one of these sequences, say {tin.J, is strictly
monotone. Then define

and I is continuous and linear between these nodes. Because of (14 l, this
defines an I(x) E C[ -1, 1]. By (2) and the Bernstein inequality

_n_ <!(cos t in +[.,,) -f(cos tin,tl)
c=

"'y:E n tin+I,I1~lin.n

= Pn(cos tin + [,n) - PII( COS t in.n)

t in + l,n - ('n,1l

=!!... p,,(cos t) I =O(n l/lp,,11
dt 1=;

i.e., [[Pnll ~ l/\/[;n----> CfJ as 11----> 'x, which shows that (4) cannot hold. Hence
(6) is necessary.

The proof of the necessity of (5) is more difficult. First we prove the
following.

LEMMA 3. Let In C [ -n, n] (n EN) and let [n be a sequence of tri
gonometric polynomials of order at most rn such thai rnl/"I ----> CD and
II tnll ,,:;;, M (n EN) (r" i OJ). Denote by Q(I,,) the number of + 1, - I, + 1, ...
oscillations of tIl on I". Then

Proof Assume to the contrary that Q(IIl)/r"\I,, I> (l + 6)/n for some
6> 0 and n E Q (Q c N infinite), where we may take J"I - a,l' a,,) and
O<a,,<n:-26[. Let now s" be an even integer such that

040582-9
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-Jrnan< Sn < 2 yr;:;;:, and let 8" = nMan/(s" sin 6d. Consider the tri
gonometric polynomial

" 1 ( sin(x/2) )'" ( Sn)!/,,(x)=t,,(X)+?". I)" cos 1'''--2 x.
~ sIn(a"I_)

of order at most r/1" Evidently, on [-a,,, an], Un has at least Q(I,,) - 1
zeros. If x rt (-an - 8", an + 8,,) we have for Sn large enough

(
sin(x/2) )'" >- (Sin«an + 8n )/2))'"
sin(a,J2);;-- sin(a,./2)

_ ( 2 sin(8n/4) cos(a,J2 + 8n/4 ))5"
- 1+ . ( /'J)sIn a" ~

(
28 sin 6 )S"? 1+ n 1

na"

Thus Un has at least (2n-2an-28n)(2rn-s,,)/2n)-4 zeros In

[ - n, n] \( -an - 8", an + 8n ). Therefore

2rn - Sn
QUn) + (2n - 2an - 28n) ) ~ 2r" + 5,_n

i.e.,

2a r 28 r
Q(In) ~ 5 + --"!-.!!. + _n_n + s,,,

n n

1+6 Q(In) Q(In) 1 (1 8,. 1)
--<--=--~-+c-+-+-= ,

n rnIInl 2rna" n r"a" an Ilr a
" n n

a contradiction, since rna" -> 00 and 8"/a,, = c/s" -> O.
We now return to the proof of the necessity of (5). Define the continuous

2n-periodic function F" by FnUkn)=(-l)k (h:;k~n), F" is linear in
between, constant in [0,t 1,,], [tn",n], F,,(t)=F,.(-t) (-n~t~O), and
F,,(t+2n)=F,,(t) (-oo<t<oo). By (5) (j)(Fn,h)~cnh, hence
E;,(F,,) ~ c1 • Set !n(x) = F" (arc cos x). Then by assumption for any 8> 0
there exist p"EII[(1+<),,] such that p,,(xk,,) =!n(Xkn) = (_l)k (l~k~n)

and
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Thus IIp,,il ~ c: (deg Pll = [(1 + e)n]); hence by Lemma 3

-I' N n(lll) -I' Q(ln) 1
1m ~ 1m ~-.

n~X) [(l + e)n] 11,,1 ,,~x [(l + e) n ] IIn I n

241

Since e > 0 is arbitrary, we can put e = 0 here.

Using the same arguments, we could have proved the following, slightly
more general theorem:

THEOREM A. For every f(x) E C[ - L 1], e> 0, and d ~ 1 there exists {1

sequence afpolynomials q,,(XlEIT[dn(IHl] such that (2) and

hold, if and only ((

whenever lim nll,,1 = cr
n -- :£

and (6 l holds.
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